
Navelink.org

Developer forum
25-05-2023

Agenda
1) Navelink Platform status & update

2) Navelink Roadmap (Head of concept Navelink)

3) Service development discussions & information
a) Forum service developers (Each developer)

b) Forum security and interoperability (Each developer)

c) Ongoing work within the STM-community (Trello) (Each developer)

4) Overview of Navelink usage

5) Q&A
a) New questions (All)

6) Upgraded G1128 schema

7) Navelink HOW-Tos

8) GetPublicKey

9) Discussion: Navelink + REST + MMS + VDES

10) Closing remarks

1) Navelink Platform status & update

ÅSince the last meeting:

ïMIR version 1.2.0 tested in internal environment

ÅAwaiting official release before implementing to DEV, TEST

and PROD environments.

ÅFuture

ïCreate Navelink specific email adresses in each

organization?

ïNCSR 10 meeting decisions?

Received questions

Å

Planned
Release

Planned
Release

Planned
Release

2) Navelink Roadmap

Increase SECOM
Compliance

Support new Service
Specifications and Designs

Add Service
Ledger support

Add MMS
support

Increase VDES
support

Add SECOM
Hotel

Add support for
Service Payment

Enable subscription on
Navelink technical notes

Enhancefunctionality
to host payload formats

Add GetPublicKey

Add SecretKeyExchange

Add MRRusage

3) Servicedevelopment discussions & information

ÅForum service developers

ïCommon discussions

ÅForum Security and interoperability

ïCommon discussions

ÅOngoing work within the STM-community (Trello)

ïTrello check

ïCommon standardization work: S-124, S-421, SECOM, General STM news

4) Overview on Navelink usage
2023-05-24

Events since last Dev Forum:
Minor changes

Navelink Operational environment Service Registrations
Service Specifications: 1 (Voyage Information Service v2.2)
Service Technical Design: 1 (Voyage Information Service Design v2.2)
Service Instances: 171

Operational environment

Operational environment

5) Q&A

ÅAny Questions? The floor is open.

6) Upgraded G1128 Schema (September 2022)

ÅG1128 v1.0 "early"

ÅG1128 v1.3 (latest implemented in Navelink)

v1.3v1.0 "early"

Changed Service Endpoint

ÅWhen changing the service endpoint for an instance, the certificate domain

name is not automatically changed and need to updated as well.

ÅWhen updating the Certificate domain, remember to issue new certificates.

ÅTo handle services in Navelink, the permission SERVICEADMIN must be

added for the User.

Update of G1128 Service Documentation schemas

https://www.iala-aism.org/product/g1128/

The IALA G1128 contains guidelines/specifications for documentation and

description of services. It contains both textual documentation, document

templates and XML schemas for describing services in the 3 defined levels;

Specification, Design and Instance.

In Navelink, the data model in Service Registry is based on G1128 XML schemas

with some complementary attributes. Creating and registering a new service in

Navelink Service Registry is mainly done by uploading an XML describing the

service. This XML shall follow the G1128 XML Schema (XSD).

Current version in Navelink is G1128 v1.3 schemas but intends for now to be

backward compatible with v1.0 "early".

https://www.iala-aism.org/product/g1128/

G1128 v1.3

Differences
Å serviceType: CharacterString -> ServiceType[1..*]
Å URL->endpoint

serviceType

ÅNeed to decide and harmonize use of field

serviceType

7) Navelink HOW ïTO create keys and get them signed

ÅHow to create keys ï and the removed function in v1.2

Å How to get keys signed by Navelink (CSR=Certificate Signing Request)

Å Certificate renewal and certificate revocation

Å Validation of certificate

Å Certificate revocation list

HOW-TO Issue Certificates in Navelink

Certificates can be issued from Navelink in different ways.

1) Manually through the Web Portal

2) With REST service calls to Navelink Identity Registry

Certificates in Navelink are formatted as X.509 Certificates (RFC 5280) and are

based on private ï public key pair. The Certificate is in this context the signed public

key. The private key belongs to the creator only.

To avoid transferring the private key on the internet, itôs strongly recommended to

create the private-public key pair locally, and then transfer only the public part of the

certificate to Navelink to be signed and stored as valid certificate attached to the

specific identity.

From v1.2 of MCP and Navelink the function to create private key on Navelink server

is removed. The key can still be created through Web Management Portal on local

browser.

Guidelines for issuing certificate through Web Portal
1) Login to the Web Portal for your target environment

(each environment in Navelink has its own Root

Certificate)

2) Select the entity in focus for the certificate. If the

entity is a Service Instance, the entity can be

selected either in Identity Registry as ID Service, or

the Service Instance in Service Registry part in the

portal.

3) Press button ñIssue new Certificateò

If you donôt see the button, you donôt have the right

permissions.

4) Follow the guidelines. The only choice now is to

select ñLocalò button. This means that the private key

is created in your local browser and is not transferred

on the internet.

5) Follow the guidelines. If you donôt need a keystore

file, press ñManualò and you will receive a ZIP-file

with Private key, Public key and Certificate.

maritimeconnectivity/IdentityRegistry: MCP (Maritime Connectivity Platform) Identity Registry API (github.com)

https://github.com/maritimeconnectivity/IdentityRegistry

HOW-TO Get keys signed withCSR
Reference: MCC description on GitHub

https://github.com/maritimeconnectivity/IdentityRegistry

The MIR supports signing of PEM encoded PKCS#10 certificate signing requests. It is

usually generated for the entity where the certificate will be stored/owned and

contains the entity's information such as the organization name, common name

(domain name), locality, and country, which will be overwritten by the corresponding

information stored in MIR. A CSR also contains the public key that will be included in

the certificate. A private key is usually created at the same time that you create the

CSR, andis expected to be stored and treated securely.

The algorithm and bit -length pairs of CSR that MIR supports areRSA:>=2048,

DSA:>=2048, ECC:>=224, and EdDSA:256.

The rationale to use CSR is to protect your private key and
never have it in transit on Internet.

https://github.com/maritimeconnectivity/IdentityRegistry

Step 1 Generate keys

ECC

$ openssl ecparam -out privateKey.pem -name secp384r1 ïgenkey
$ openssl ecparam -out privateKey.pem -name secp256r1 ïgenkey

RSA

$ openssl genrsa -out privateKey.pem 2048

DSA

$ openssl dsaparam -genkey 2048 | openssl dsa -out privateKey.pem

EdDSA

$ TBD
Protect your private keys with passphrase
$ openssl ec -aes256 ςin privateKey.pem -out protectedPrivateKey.pem

$ openssl rsa ςaes256 -in privateKey.pem -out protectedPrivateKey.pem

RSA:>=2048, DSA:>=2048, EC:>=224, and EdDSA:256

Step 2: Generate CSR

$ openssl req -new -key privateKey.pem -out request.csr

This will prompt you to fill in the attributes of the certificate. For this
you can just use dummy data as they in the end will be replaced

with data from the MIR database.

$ opensslversion
OpenSSL 1.1.1g 21 Apr 2020

Step 3: Send CSR to MIR for signing

CSR for Service certificate

Navelink DEV

$ curl.exe -i -v -k --output ñcsr.outputò --key ñ<MIR_PrivateKey.pem>" --cert ñ<MIR_Certificate.pem>" --header "Accept:

application/pemȤcertificateȤchain;application/json;charset=UTF-8" --header "Content-Type: text/plain" --http1.1 -X POST

"https://apiȤx509.dev.navelink.org/x509/api/org/urn:mrn:mcp:org:navelinkȤdev:navelink/service/<serviceMRN>/<serviceVersion>/certificate/issueȤnew/csr"

-T ñrequest.csrò

Navelink TEST

$ curl.exe -i -v -k --output ñcsr.outputò --key ñ<MIR_PrivateKey.pem>" --cert ñ<MIR_Certificate.pem>" --header "Accept:

application/pemȤcertificateȤchain;application/json;charset=UTF-8" --header "Content-Type: text/plain" --http1.1 -X POST

"https://apiȤx509.test.navelink.org/x509/api/org/urn:mrn:mcp:org:navelinkȤtest:navelink/service/<serviceMRN>/<serviceVersion>/certificate/issue-new/csr"

-T ñrequest.csrò

Navelink OPS

$ curl.exe -i -v -k --output ñcsr.outputò --key ñ<MIR_PrivateKey.pem>" --cert ñ<MIR_Certificate.pem>" --header "Accept:

application/pemȤcertificateȤchain;application/json;charset=UTF-8" --header "Content-Type: text/plain" --http1.1 -X POST

"https://apiȤx509.navelink.org/x509/api/org/urn:mrn:mcp:org:navelink:navelink/service/<serviceMRN>/<serviceVersion>/certificate/issueȤnew/csr" -T

ñrequest.csrò

Navelink ORG MRN
DEV: urn:mrn:mcp:org:navelink-dev
TEST: urn:mrn:mcp:org:navelink-test
OPS: urn:mrn:mcp:org:navelink

Navelink MIR URL
DEV: https://api-x509.dev.navelink.org
TEST: https://api-x509.test.navelink.org
OPS: https://api-x509.navelink.org

Replace all yellow marked text with actual data.
NB! Often absolute paths are required by CURL for the keys.

Step 3: Send CSR to MIR for signing

CSR for Device certificate

Navelink DEV

$ curl.exe -i -v -k --output ñcsr.outputò --key ñ<MIR_PrivateKey.pem>" --cert ñ<MIR_Certificate.pem>" --header "Accept:

application/pemȤcertificateȤchain;application/json;charset=UTF-8" --header "Content-Type: text/plain" --http1.1 -X POST

"https://apiȤx509.dev.navelink.org/x509/api/org/urn:mrn:mcp:org:navelinkȤdev:navelink/device/<deviceMRN>/<version>/certificate/issueȤnew/csr" -T

ñrequest.csrò

Navelink TEST

$ curl.exe -i -v -k --output ñcsr.outputò --key ñ<MIR_PrivateKey.pem>" --cert ñ<MIR_Certificate.pem>" --header "Accept:

application/pemȤcertificateȤchain;application/json;charset=UTF-8" --header "Content-Type: text/plain" --http1.1 -X POST

"https://apiȤx509.test.navelink.org/x509/api/org/urn:mrn:mcp:org:navelinkȤtest:navelink/device/<deviceMRN>/<version>/certificate/issue-new/csr" -T

ñrequest.csrò

Navelink OPS

$ curl.exe -i -v -k --output ñcsr.outputò --key ñ<MIR_PrivateKey.pem>" --cert ñ<MIR_Certificate.pem>" --header "Accept:

application/pemȤcertificateȤchain;application/json;charset=UTF-8" --header "Content-Type: text/plain" --http1.1 -X POST

"https://apiȤx509.navelink.org/x509/api/org/urn:mrn:mcp:org:navelink:navelink/device/<deviceMRN>/<version>/certificate/issueȤnew/csr" -T ñrequest.csrò

Navelink ORG MRN
DEV: urn:mrn:mcp:org:navelink-dev
TEST: urn:mrn:mcp:org:navelink-test
OPS: urn:mrn:mcp:org:navelink

Navelink MIR URL
DEV: https://api-x509.dev.navelink.org
TEST: https://api-x509.test.navelink.org
OPS: https://api-x509.navelink.org

Replace all yellow marked text with actual data.
NB! Often absolute paths are required by CURL for the keys.

Step 3: Send CSR to MIR for signing

The result from the CSR request be a certificate chain containing of the signed

certificate followed by the intermediate CA that signed it, looking like this:

-----BEGIN CERTIFICATE-----

....

-----END CERTIFICATE-----

-----BEGIN CERTIFICATE-----

....

-----END CERTIFICATE-----

Store the first certificate in a file e.g. Certificate.pem, this is your signed public

key. The Certificate can also be downloaded through the web portal.

You have now a Private-Public key pair that can be used for signing of data

and authentication.

Example
$ curl.exe -i -v -k --output "NLP-DEV_csr.output" --key "C:\Users\MikaelOlofsson\Documents\Navelink\Certificates\Private\ NLP-DEV_PrivateKey_Mikael_Olofsson.pem" --cert
"C:\Users\MikaelOlofsson\Documents\Navelink\Certificates\Private\NLP-DEV_Certificate_Mikael_Olofsson.pem" --header "Accept: application/pemπcertificateπchain;application/ json;charset=UTF-8" --header "Content-
Type: text/plain" --http1.1 -X POST
"https://apiπx509.dev.navelink.org/x509/api/org/ urn:mrn:mcp:org:navelinkπdev:navelink/service/urn:mrn:mcp:service:navelinkπdev:navelink:instance:mikaelπtestπidservice/1/certificate/issue-new/csr" -T "request.csr"
2>"NLP-DEV_csr.error"

curl.exe -i -v --output "NLP-DEV_signedKeys_EC256.output" -k --key "C:\Navelink\Certificates\NLP-DEV_PrivateKey_Mikael_Olofsson_22Nov04.pem" --cert "C:\Navelink\Certificates\NLP-
DEV_Certificate_Mikael_Olofsson_22Nov04.pem" --header "Accept: application/pem-certificate-chain;application/ json;charset=UTF-8" --header "Content-Type: text/plain" --http1.1 -X POST "https://api-
x509.dev.navelink.org/x509/api/org/urn:mrn:mcp:org:navelink-dev:navelink/device/urn:mrn:mcp:device:navelink-dev:navelink:vdes:vdes-1/certificate/issue-new/csr" -T "ec256-key-pair.csr" 2>csrEC256.error

Verify the certificate

The CSR request gives you the signed public key and the intermediate certificate used for the

signing.

The certificate can be verified by

1) Check the certificate with OCSP
openssl ocsp -issuer navelink-test-ca-chain.pem -cert <Certificate.pem> -text -url

http://api.test.navelink.org/x509/api/certificates/ocsp/urn:mrn:mcp:ca:navelink-test:navelink-idreg

the yellow markings need to be adjusted depending on which environment you want to check against.

2) Download the public certificate from portal and compare (can only be done within your own

organization)

3) REST call using the certificate as verification of certificate validity

1) REST call to Navelink MIR

2) REST call to another service (e.g. VIS instance)

http://api.test.navelink.org/x509/api/certificates/ocsp/urn:mrn:mcp:ca:navelink-test:navelink-idreg

Check Certificate with OCSP

Navelink DEV

$ openssl ocsp -issuer navelink-dev-ca-chain.pem -cert <Certificate.pem> -text -url

http://api.dev.navelink.org/x509/api/certificates/ocsp/urn:mrn:mcp:ca:navelink-dev:navelink-idreg

Navelink TEST

$ openssl ocsp -issuer navelink-test-ca-chain.pem -cert <Certificate.pem> -text -url

http://api.test.navelink.org/x509/api/certificates/ocsp/urn:mrn:mcp:ca:navelink-test:navelink-idreg

Navelink OPS

$ openssl ocsp -issuer navelink-ops-ca-chain.pem -cert <Certificate.pem> -text -url

http://api.navelink.org/x509/api/certificates/ocsp/urn:mrn:mcp:ca:navelink:navelink -idreg

$ opensslversion
OpenSSL 1.1.1g 21 Apr 2020

The trusted Public Root Certificate for Navelink DEV
environment is found on
https://api.dev.navelink.org/trust-chain.pem

https://api.test.navelink.org/trust-chain.pem
https://api.navelink.org/trust-chain.pem

Navelink ORG MRN
DEV: urn:mrn:mcp:org:navelink-dev
TEST: urn:mrn:mcp:org:navelink-test
OPS: urn:mrn:mcp:org:navelink

Navelink MIR URL
DEV: https://api-x509.dev.navelink.org
TEST: https://api-x509.test.navelink.org
OPS: https://api-x509.navelink.org

Replace all yellow marked text with actual data.

https://api.dev.navelink.org/trust-chain.pem
https://api.test.navelink.org/trust-chain.pem
https://api.navelink.org/trust-chain.pem

Check Certificate by comparison to downloaded Certificate

Log on to Web portal for the environment

Find your service in ID Services

Download the public certificate

The file will be single line with the public certificate.
Compare this file to the first certificate received in the CSR
request response.

